

ACCIDENT RISK PREDICTION

Proof of Concept for

Pennsylvania Turnpike Commission 700 South Eisenhower Blvd.

Middletown, PA 17057

Background

BA

STRATEGIC DRIVER: FINANCIAL

Goal: Maintain a sound financial position.

Our staff of financial professionals is deeply committed to managing our customers' toll dollars and the Commission's overall financial position so that we continue to provide a safe and valued travel experience every day while making wise and needed investments in our system's infrastructure. We recognize that the national and global economies, as well as local and state level policy decisions, can have a direct impact on our financial position and we have a responsibility to either help guide or respond accordingly to these external forces.

Objectives and Measures:

1. Maintain and provide support to our credit rating.

Measures: Bond rating; Debt services coverage ratio

2. Improve operational efficiencies.

Measures: Percentage of growth in the operating budget; Overall variance between approved operating budget and the year-end budget spending

3. Maintain or increase toll revenue amount.

Measures: Toll revenue amount; Capture rate = Net Toll Captured (Net Toll Revenue + Fee Revenue - Bad Debt and Revenue Adjustments) and Percent of Net Tolls Captured (Net Tolls + Fees - Bad Debt and Revenue Adjustments/Net Tolls + Fee Revenue); Non-toll revenue amount

4. Promote and analyze the Turnpike's ability to implement innovations.

Measure: Number of innovations and innovative practices evaluated by the Innovation Council, AIM, or other PA Turnpike committee

BUSINESS PROBLEM

first system-wide gathering of data from a variety of sources. Because some map

100s of
Variables10 Years of Data
700,000 Accidents
1,200+ Segments

Train a Machine to do it?

TYPES OF ARTIFICIAL INTELLIGENCE

Reasoning

Generating conclusions from available knowledge using logical techniques such as deduction and induction

E.g. Scheduling

Perception

Ability to perceive the world through input from sensors: Cameras, Microphones, Images, Sonar & more

E.g. Facial Recognition

Robotics

Ability of Robots to accurately perceive their location & surroundings, plan their path, & manipulate objects Knowledge Representation

Representing information about the world in a form that a computer system can utilize to solve complex tasks

E.g. Semantic Nets

Natural Language Processing

Understanding Natural Language & extracting entities, sentiment, & emotions

E.g. Smart Agents

Machine Learning Steps

STEP 1: EXPLORE THE DATA

Use GIS tools to Identify patterns to determine a strategy

EXPLORING THE FEATURES

• Some patterns in features can be used to identify times and places with high risk

STEP 2: DATA PREPARATION

Temperature Sun, Mon, Fri..

Wind Speed Fast, Slow..

I V F

Visibility

High/Low

Snow Depth High/Low

Day of the Week Sun, Mon, Fri..

Time of the Day

12:45, 23:00

1	_	Г

Month Feb, Dec..

 \longleftrightarrow

Road Width

20-30 M

Road Alignment Straight / Curved

Proximity to Intersections

Speed Limit 120 km/h

Sun Direction East, West

Daily Traffic AADT

ď	
	긑

Proximity to Billboards

DEFINITIONS

Sinuosity - length of straight line connecting endpoints divided by segment length

Source: https://medium.com/a-r-g-o/rad-roads-using-osmnx-68fc8b15f046

Orientation - angle of the line connecting the endpoints respecting direction of travel

GIS DATA PREPARATION

ACCIDENT DATA PREPARATION

Time Features

Hour of the Day

Day of Week

Day of Year

Road Segment & Accident

Distance Features

Distance to Bridge

Distance to Interchange

Sun Features

Position of Sun

Solar Angle relative to road

STEP 3: FEATURE ENGINEERING

Training Data (Historical)

For Learning..

Learning Models

Trained Model

FEATURES TO USE IN MODELING

Static

Properties that do not change over time (road curves, number of accidents, etc.)

Dynamic

Properties that change with time (sun angle, weather, traffic, etc.)

PTC STATIC FEATURES USED

Feature	Туре	Source
Road Sinuosity	Static	PTC Geodatabase
Road Orientation	Static	PTC Geodatabase
Historical Accidents	Static	PA State Police TrACS
Bridges	Static	PTC Geodatabase
Tunnels	Static	PTC Geodatabase
Population Density	Static	Esri Living Atlas
Median Age	Static	Esri Living Atlas
Distance to Bridges	Static	Derived
Distance to Tunnels	Static	Derived
Distance to Interchanges	Static	Derived
Distance to Ramps	Static	Derived
Distance to Toll	Static	Derived
Distance to DMS	Static	Derived
Distance to Service Plaza	Static	Derived
Bear Encounters	Static	Computer Aided Dispatch
Deer Kills	Static	Computer Aided Dispatch

PTC DYNAMIC FEATURES USED

Feature	Туре	Source
Air Temperature	Dynamic	MesoWest
Precipitation	Dynamic	MesoWest
Wind Gust	Dynamic	MesoWest
Dew Point Temp	Dynamic	MesoWest
Wind Speed	Dynamic	MesoWest
Relative Humidity	Dynamic	MesoWest
Day of Year	Dynamic	Attribute (where available)
Day of Week	Dynamic	Attribute (where available)
Time of Day	Dynamic	Attribute (where available)
Solar Elevation	Dynamic	Python Library
Solar Azimuth	Dynamic	Python Library
Solar Angle Relative to Road Orientation	Dynamic	Derived
Speed, Delta, Reference, Score, Congestion, # of Lanes	Real-Time	INRIX

WEATHER FEATURES

- Obtaining historic weather was a challenge
- RWIS not available
- Inconsistent data sources
- Weather stations not on road

WEATHER APPROACH

Interpolation – the closer a weather station to incident, the more similar the conditions

STEP 4: MODEL CREATION

Experiment with different models to find the best results

MACHINE LEARNING WORKFLOW

TECHNICAL APPROACH

- Algorithm *learns* to build decision trees.
- After many trees have been \bullet built, predictions are made by combining the results of the entire ensemble.
- Combines many Weak *Learners* in to one *Strong* Learner.

Xgboost.readthedocs.io

Does a Person Play Video Games?

NEURAL NETWORKS

- Roughly inspired by the Human brain.
- Constructed from a series of *nodes* and *connections* (or *weights*) arranged in *layers*.
- Data goes in the input nodes and the W's (the *weights*) determine how strongly connected different nodes are.
- After the network learns the W's, the output can be used for prediction.
- In practice networks can have many layers (Deep Networks) and hundreds of nodes per layer.

NAÏVE BAYES

- Treat each feature as a "probability"
- Combine all features to get a measure of "risk"

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

MODEL EVALUATION

Model	Pros	Cons
XGBoost	 Ranks features by importance, Few parameters to adjust Low overhead to get running (less code, less data prep) 	 May not pick up on very complicated relationships, Tendency to "overfit" the data
Neural Network	 Powerful model that can find very complex relationships 	 Many parameters to adjust, must prepare data carefully Blackbox (difficult to understand what is going on inside)
Naïve Bayes	 Very simple model to implement and to understand Easy to adjust 	 May not find complex relationships Must have completely uncorrelated features (e.g. may have to use less features than other models)

Using the Model

RISK OVER TIME VISUALIZATION

WEATHER EVENT

Preparing for Machine Learning

STRUCTURED AND POPULATED DATA

Incident_Number	Crash_Date	Crash_Time	County_Code	Principal_Road_	_Speed_Limit
A01-1663764	1/18/2010	11	64		5
A01-1858102	10/22/2013	0	64		65
B01-1684810	12/13/2008	22	62		55
B02-1739963	10/25/2009	1	26		55
B02-1952337	2/5/2013	6	26		65
B02-1996781	10/21/2013	14	26		65
B02-2109435	5/8/2015	7	62		55
B02-2120467	6/30/2015	6	26		55
B03-1775353	5/7/2010	0	2		65
B03-1854590	7/4/2011	22	2		55
B03-1867452	9/12/2011	6	2		55
B03-1870321	9/28/2011	3	62		65
B03-1896689	2/29/2012	8	2		55
B03-1972068	5/31/2013	14	2		55
B03-1998951	11/2/2013	23	2		(
B03-2039952	5/19/2014	20	62		55
B03-2042820	6/2/2014	8	2		55
B03-2046385	6/17/2014	6	2		55
B03-2058339	8/13/2014	8	2		65
B03-2064803	9/18/2014	5	2		55
B03-2079054	12/2/2014	9	2		55

IDEAL STRUCTURE

INCIDENT NUMBER 🔽	Roadway	Month	1 👻	Year 💌	INCIDENT TIME 🔽	Hour 🔽 DAY OF WEEK 🔻	WEATHER CONDITIONS		RD SURFACE COND
T09-9049967	TURNPIKE MAINLINE		12	2015	0.06875	1 THURSDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048353	TURNPIKE MAINLINE		4	2015	0.272916667	6 MONDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048079	TURNPIKE MAINLINE		2	2015	0.753472222	18 MONDAY	SNOW	WET	
PA 2017-847393	TURNPIKE MAINLINE		8	2017	0.402777778	9 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9049046	TURNPIKE MAINLINE		7	2015	0.689583333	16 SUNDAY	NO ADVERSE CONDITIONS	DRY	
T09-9050849	TURNPIKE MAINLINE		6	2016	0.267361111	6 WEDNESDAY	RAIN	WET	
T09-9049356	TURNPIKE MAINLINE		9	2015	0.422222222	10 TUESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9051061	TURNPIKE MAINLINE		7	2016	0.666666667	16 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-904091	TURNPIKE MAINLINE		8	2017	0.479166667	11 THURSDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048523	TURNPIKE MAINLINE		5	2015	0.40625	9 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048346	TURNPIKE MAINLINE		4	2015	0.847222222	20 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-836621	TURNPIKE MAINLINE		8	2017	0.339583333	8 SUNDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-831596	TURNPIKE MAINLINE		8	2017	0.777083333	18 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-839431	TURNPIKE MAINLINE		8	2017	0.348611111	8 MONDAY	RAIN	WET	
PA 2017-579594	TURNPIKE MAINLINE		6	2017	0.1125	2 THURSDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-68382	TURNPIKE MAINLINE		1	2017	0.555555556	13 SUNDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-6206	TURNPIKE MAINLINE		1	2017	0.458333333	11 MONDAY	NO ADVERSE CONDITIONS	WET	
PA 2017-839581	TURNPIKE MAINLINE		8	2017	0.360416667	8 MONDAY	RAIN	WET	
T09-9050212	TURNPIKE MAINLINE		2	2016	0.1875	4 SATURDAY	NO ADVERSE CONDITIONS	DRY	
T09-9050162	TURNPIKE MAINLINE		1	2016	0.482638889	11 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048574	TURNPIKE MAINLINE		5	2015	0.621527778	14 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	

AVOID MANUAL DATA ENTRY

Manual entry for join field

ptcpspcadnumber	
PA20160000002	
180	
PA2016-52925	
PA20163389	
PA00000000	
61850	
2016-68795	
69195	
2016-72693	
PA2016-75732	
2016-75819	
PA16-76465	
PA1680446	
PA81839	
PA82051	
83175	
PA16-84984	

GO DIGITAL IN THE FIELD

●●●○○ Telstra 🤻	🗟 🔆 🕺 11:09 am	イ 🎱 米 30% 💷・
★ Loc Lat: -	ation -26.725890° Long: 148.	0 <mark>200</mark> 828982° └O
	Edited seconds ago	
Traffic Aco	cidents: Driving	off the road
Type of the ac Driving off	cident / incident the road	>
# of vehicles in	nvolved	
1	Stored on	
Type of vehicle UTE	e involve device	>
second vehicle None	e involved	>
Third vehicle in None	nvoived	>

RECOMMENDATIONS

- Establish well-defined data model
- Create structured databases
- Enforce consistent data entry
- Capture well-structured data up front

PRESERVE GRANULAR DETAILS

INCIDENT NUMBER 🔽	Roadway 🛛 💌	Month 💌	Year 💌	INCIDENT TIME 💌	Hour 💌 🛛 DAY OF WEEK 🔻	WEATHER CONDITIONS		RD SURFACE COND
T09-9049967	TURNPIKE MAINLINE	12	2015	0.06875	1 THURSDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048353	TURNPIKE MAINLINE	4	2015	0.272916667	6 MONDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048079	TURNPIKE MAINLINE	2	2015	0.753472222	18 MONDAY	SNOW	WET	
PA 2017-847393	TURNPIKE MAINLINE	8	2017	0.402777778	9 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9049046	TURNPIKE MAINLINE	7	2015	0.689583333	16 SUNDAY	NO ADVERSE CONDITIONS	DRY	
T09-9050849	TURNPIKE MAINLINE	6	2016	0.267361111	6 WEDNESDAY	RAIN	WET	
T09-9049356	TURNPIKE MAINLINE	9	2015	0.422222222	10 TUESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9051061	TURNPIKE MAINLINE	7	2016	0.666666667	16 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-904091	TURNPIKE MAINLINE	8	2017	0.479166667	11 THURSDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048523	TURNPIKE MAINLINE	5	2015	0.40625	9 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048346	TURNPIKE MAINLINE	4	2015	0.847222222	20 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-836621	TURNPIKE MAINLINE	8	2017	0.339583333	8 SUNDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-831596	TURNPIKE MAINLINE	8	2017	0.777083333	18 FRIDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-839431	TURNPIKE MAINLINE	8	2017	0.348611111	8 MONDAY	RAIN	WET	
PA 2017-579594	TURNPIKE MAINLINE	6	2017	0.1125	2 THURSDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-68382	TURNPIKE MAINLINE	1	2017	0.555555556	13 SUNDAY	NO ADVERSE CONDITIONS	DRY	
PA 2017-6206	TURNPIKE MAINLINE	1	2017	0.458333333	11 MONDAY	NO ADVERSE CONDITIONS	WET	
PA 2017-839581	TURNPIKE MAINLINE	8	2017	0.360416667	8 MONDAY	RAIN	WET	
T09-9050212	TURNPIKE MAINLINE	2	2016	0.1875	4 SATURDAY	NO ADVERSE CONDITIONS	DRY	
T09-9050162	TURNPIKE MAINLINE	1	2016	0.482638889	11 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	
T09-9048574	TURNPIKE MAINLINE	5	2015	0.621527778	14 WEDNESDAY	NO ADVERSE CONDITIONS	DRY	

PRESERVE GRANULAR DETAILS

PENNSYLVANIA TURNPIKE COMMISSION 2017 MAINLINE AVERAGE ANNUAL DAILY TRAFFIC (AADT) AND AUGUST AVERAGE DAILY TRAFFIC (ADT) BETWEEN INTERCHANGES

Interchange	EB/NB AADT	WB/SB AADT	Total AADT	Percent Trucks	August EB / NB ADT	August WB / SB ADT	August ADT	August Percent Trucks
T 2 - T 30	12,272	N/A	12,272	23%	14,330	N/A	14,330	21%
Т 30 - Т 39	17,970	16,086	34,057	21%	20,723	18,624	39,347	21%
Т 39 - Т 48	19,853	17,915	37,768	20%	22,754	20,667	43,421	19%
Т 48 - Т 57	21,897	20,079	41,976	18%	24,788	22,936	47,724	18%
Т 57 - Т 67	24,752	22,998	47,751	17%	27,919	26,187	54,106	17%
Т 67 - Т 75	19,805	18,425	38,229	21%	22,706	21,431	44,137	20%
T 75 - T 91	19,665	18,221	37,886	29%	22,778	21,558	44,337	27%

BUILD UP DATA ARCHIVES

- Establish a feature pipeline that can be refreshed with new data
- Pre-join tables to avoid cross referencing
- Avoid missing data and inconsistent formatting (must be estimated or discarded from analysis)

Next Steps

MODEL IMPROVEMENTS - BIAS

HISTORICAL WEATHER

- Need reliable provider for "point in time" historical weather
 - Solar radiation
 - Precipitation rate
 - Precipitation depth
 - Precipitation type
 - Conditions (rainy, foggy,, etc.)

- Temperature (Air, Dew Point, and ideally road surface)
- Humidity
- Windspeed/Direction
- Visibility
- Cloud Cover

EXPLORE CADS FURTHER

- Rich source of information besides accidents
- Good archive of data for training

NEGATIVE SAMPLE PROBLEM

- Model is trying to identify accidents when there is an equal number of non-accidents
- In reality, there are hundreds of thousands more non-accidents than accidents

- Explore Methods that do not require the generation of negative samples
 - Naïve Bayes
 - Clustering in Feature Space
 - Find where accidents tend to cluster
 - Measure how similar or dissimilar a road segment is to the clusters to predict a risk value on that segment

THANK YOU!

Bob Taylor, P.E., PTOE Chief Technology Officer Pennsylvania Turnpike Commission 700 South Eisenhower Blvd. Middletown, PA 17057 Phone: 717-831-7548 Cell: 717-645-1740 robtaylo@paturnpike.com

